Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Hanging by a Thread

Biologist Emily Carrington probes the secrets of the humble mussel’s powerful attachment, and how mussels will fare as sea chemistry changes.

By Elizabeth Cooney, Washington Sea Grant

The unassuming but commercially valuable mussel dominates temperate seas worldwide, clinging to rocks and docks by a cluster of thread-like anchors called the byssus or “the beard.” The byssus’s unique protein matrix gives each thread extraordinary strength, even in salt water. But will byssal threads still hold fast as the seas become warmer and more acidic? Supported by Washington Sea Grant, University of Washington biology professor Emily Carrington is trying to answer that question and determine whether food supply and spawning may also affect byssal strength. The answers she’s finding aren’t simple, but they’re sometimes surprising. 

Carrington and her colleagues have found that impacts vary depending on mussel species. When temperature rises, the West Coast’s native Pacific blue, mussel (Mytilus trossulus) grows fewer threads, but the naturalized Mediterranean mussel (M. galloprovincialis) grows more. The native California mussel (M. californianus) shows no change as waters warm, but is more sensitive to low pH and less resilient in low salinity. These results suggest that Mediterranean mussels may outcompete the native species as the ocean becomes warmer and more acidic. 

Measuring byssal strength is a straightforward process; the researchers yank mussels from the rocks with a force gauge or stretch individual threads in a tensometer to determine extension and breaking point. Working with Carrington, graduate student Laura Newcomb has investigated byssal strength in laboratory experiments and field assessments. She found that byssal strength and elasticity decline when seawater pH drops below 7.6.  Since pH ranges from just above 7.0 to well above 8.0 in the bays where the mussels grow, this threshold presents a real danger. Fortunately, 66°C, the temperature at which byssal strength drops off, is still well above the average temperatures in Puget Sound. 

The picture gets more complicated: pH and temperature seem to make less difference when mussels spawn, apparently because they’re already shifting energy to producing sperm and eggs rather than byssus. But for the mussels themselves the imperative is always simple: hold tight or die. 

That’s gotten the attention of Ian Jefferds, the general manager of the Penn Cove Shellfish Company on Washington’s Whidbey Island, where Carrington and Newcomb conduct their fieldwork. Jefferd’s operation remains healthy and seems sustainable, but he doesn’t take things for granted. “We don’t want a situation. Why wait for one to happen?” 

The effects of warming, acidifying waters on byssal strength have “important implications for a major global industry,” notes Carrington. Many countries, including China, Canada and Spain, grow even more mussels than the United States, and Carrington hopes her lab’s work will also benefit them. “What we’re learning here in Washington will be transferable to other industries.”

Related Posts

Virginia Sea Grant Launches the USDA and NOAA-Supported Aquaculture Information Exchange Online Community Platform

The Aquaculture Information Exchange (AIE) online community platform website is now live and open for new user registrations. The AIE represents a joint effort between NOAA’s National Sea Grant Office, NOAA’s Fisheries Office of Aquaculture, USDA’s Agricultural Research Service (ARS), USDA’s National Institute of Food and Agriculture (NIFA), and Virginia Sea Grant.

Read More >
Image of Capitol Hill with a bright blue cloudless sky and blooming cherry blossom tree in the right corner
Academia to Government

Sea Grant Announces the 2024 Class of the John A. Knauss Marine Policy Fellowship

The National Oceanic and Atmospheric Administration’s (NOAA) National Sea Grant College Program (Sea Grant) is pleased to announce the finalists for the 2024 class of the John A. Knauss Marine Policy Fellowship program. The 85 early-career professionals selected will be placed in federal government offices throughout Washington, D.C., and join the over 1,600 individuals who have participated in the program since its inception in 1979.

Read More >
Image of plastic debris on Oregon’s Clatsop Beach by Tiffany Woods | Oregon Sea Grant.

Sea Grant announces funding opportunities to support community-engaged marine debris removal and prevention

Sea Grant announces $19 million in federal funding opportunities to address the prevention and removal of marine debris. These opportunities are a component of nearly $3 billion in targeted investments for NOAA in the areas of habitat restoration, coastal resilience and weather forecasting infrastructure through the Infrastructure Investment and Jobs Act.

Read More >
Scroll to Top